Using Directed Acyclic Graphs for Investigating Causal Paths for Cardiovascular Disease
نویسندگان
چکیده
By testing for conditional dependence, algorithms can generate directed acyclic graphs (DAGs), which may help inform variable selection when building models for statistical risk prediction or for assessing causal influence. Here, we demonstrate how the method may help us understand the relationship between variables commonly used to predict cardiovascular disease (CVD) risk. The sample included people who were aged 30 to 80 years old, free of CVD, who had a CVD risk assessment in primary care and had at least 2 years of follow-up. The endpoints were combined CVD events, and the other variables were age, sex, diabetes, smoking, ethnic group, preventive drug use (statins or antihypertensive), blood pressure, family history and cholesterol ratio. We used the ‘grow shrink’ algorithm, in the bnlearn library of R software to generate a DAG. A total of 6256 individuals were included, and 101 CVD events occurred during follow-up. The accepted causal associations between tobacco smoking and age and CVD were identified in the DAG. Ethnic group also influenced risk of CVD events, but it did so indirectly mediated through the effect of smoking. Drug treatment at baseline was influenced by a wide range of other variables, such as family history of CVD, age and diabetes status, but drug treatment did not have a ‘causal’ association with CVD events. Algorithms which generate DAGs are a useful adjunct to traditional statistical methods when deciding on the structure of a regression model to test causal hypotheses. Journal of Biometrics & Biostatistics J o u rn al of Bio metrics & Bistatis t i c s
منابع مشابه
Parameterising the Complexity of Planning by the Number of Paths in the Domain-transition Graphs
We apply the theory of parameterised complexity to planning, using the concept of fixed-parameter tractability (fpt) which is more relaxed than the usual tractability concept. The parameter we focus on is the maximal number of paths in the domain-transition graphs, and we show that for this parameter, optimal planning is fpt for planning instances with polytree causal graphs and acyclic domain-...
متن کاملProperties of Monotonic Effects on Directed Acyclic Graphs
Various relationships are shown hold between monotonic effects and weak monotonic effects and the monotonicity of certain conditional expectations. Counterexamples are provided to show that the results do not hold under less restrictive conditions. Monotonic effects are furthermore used to relate signed edges on a causal directed acyclic graph to qualitative effect modification. The theory is a...
متن کاملIncorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs
We consider the incorporation of causal knowledge about the presence or absence of (possibly indirect) causal relations into a causal model. Such causal relations correspond to directed paths in a causal model. This type of knowledge naturally arises from experimental data, among others. Specifically, we consider the formalisms of Causal Bayesian Networks and Maximal Ancestral Graphs and their ...
متن کاملSome Fixed Parameter Tractability Results for Planning with Non-Acyclic Domain-Transition Graphs
Bäckström studied the parameterised complexity of planning when the domain-transition graphs (DTGs) are acyclic. He used the parameters d (domain size), k (number of paths in the DTGs) and w (treewidth of the causal graph), and showed that planning is fixed-parameter tractable (fpt) in these parameters, and fpt in only parameter k if the causal graph is a polytree. We continue this work by cons...
متن کاملCausal Effect Identification in Alternative Acyclic Directed Mixed Graphs
Alternative acyclic directed mixed graphs (ADMGs) are graphs that may allow causal effect identification in scenarios where Pearl’s original ADMGs may not, and vice versa. Therefore, they complement each other. In this paper, we introduce a sound algorithm for identifying arbitrary causal effects from alternative ADMGs. Moreover, we show that the algorithm is complete for identifying the causal...
متن کامل